Consider now a d-dimensional stochastic process Xt defined on a probability space (Ξ©,βπ,ββ). We say that the bridge associated to Xt conditioned to the event {XTβ=βa} is the process: {XΜt,βt0ββ€βtββ€βT}β=β{Xt,βt0ββ€βtββ€βTβ:βXTβ=βa} where T is a deterministic fixed time and aββββd is fixed too.
bridgesdekd()
functionsThe (S3) generic function bridgesdekd()
(where
k=1,2,3
) for simulation of 1,2 and 3-dim bridge stochastic
differential equations,Ito or Stratonovich type, with different methods.
The main arguments consist:
drift
and diffusion
coefficients as R
expressions that depend on the state variable x
(y
and z
) and time variable
t
.corr
the correlation structure of standard Wiener
process ; must be a real symmetric positive-definite square matrix (2D
and 3D, default: corr=NULL
).N
.M
(default: M=1
).x0
at initial time t0
.y
final time T
Dt
(default:
Dt=(T-t0)/N
).type="ito"
for Ito or type="str"
for Stratonovich (by default
type="ito"
).method
(default
method="euler"
).By Monte-Carlo simulations, the following statistical measures
(S3 method
) for class bridgesdekd()
(where
k=1,2,3
) can be approximated for the process at any time
tβββ[t0,βT]
(default: at=(T-t0)/2
):
mean
.moment
with order=2
and
center=TRUE
.Median
.Mode
.quantile
.min
and max
.skewness
and kurtosis
.cv
.moment
.summary
.We can just make use of the rsdekd()
function (where
k=1,2,3
) to build our random number for class
bridgesdekd()
(where k=1,2,3
) at any time
tβββ[t0,βT].
the main arguments consist:
object
an object inheriting from class
bridgesdekd()
(where k=1,2,3
).at
time between sβ=βt0 and tβ=βT.The function dsde()
(where k=1,2,3
)
approximate transition density for class bridgesdekd()
(where k=1,2,3
), the main arguments consist:
object
an object inheriting from class
bridgesdekd()
(where k=1,2,3
).at
time between sβ=βt0 and tβ=βT.pdf
probability density function Joint
or
Marginal
.The following we explain how to use this functions.
bridgesde1d()
Assume that we want to describe the following bridge sde in Ito form: We simulate a flow of 1000 trajectories, with integration step size Ξtβ=β0.001, and x0β=β3 at time t0β=β0, yβ=β1 at terminal time Tβ=β1.
R> set.seed(1234, kind = "L'Ecuyer-CMRG")
R> f <- expression((1-x)/(1-t))
R> g <- expression(x)
R> mod <- bridgesde1d(drift=f,diffusion=g,x0=3,y=1,M=1000)
R> mod
ItΓ΄ Bridge Sde 1D:
| dX(t) = (1 - X(t))/(1 - t) * dt + X(t) * dW(t)
Method:
| Euler scheme with order 0.5
Summary:
| Size of process | N = 1001.
| Crossing realized | C = 978 among 1000.
| Initial value | x0 = 3.
| Ending value | y = 1.
| Time of process | t in [0,1].
| Discretization | Dt = 0.001.
In Figure 1, we present the flow of trajectories, the mean path (red lines) of solution of Xt|X0β=β3,βXTβ=β1:
R> plot(mod,ylab=expression(X[t]))
R> lines(time(mod),apply(mod$X,1,mean),col=2,lwd=2)
R> legend("topleft","mean path",inset = .01,col=2,lwd=2,cex=0.8,bty="n")
Hence we can just make use of the rsde1d()
function to
build our random number generator for Xt|X0β=β3,βXTβ=β1
at time tβ=β0.55:
[1] 0.72282 0.96118 0.94990
The function dsde1d()
can be used to show the kernel
density estimation for Xt|X0β=β3,βXTβ=β1
at time tβ=β0.55
(hist=TRUE
based on truehist()
function in MASS package):
bridgesde2d()
Assume that we want to describe the following 2-dimensional bridge SDEβs in Stratonovich form:
with (B1,βt,βB2,βt) are two correlated standard Wiener process: $$ \Sigma= \begin{pmatrix} 1 & 0.3\\ 0.3 & 1 \end{pmatrix} $$
We simulate a flow of 1000 trajectories, with integration step size Ξtβ=β0.01:
R> set.seed(1234, kind = "L'Ecuyer-CMRG")
R> fx <- expression(-(1+y)*x , -(1+x)*y)
R> gx <- expression(0.2*(1-y),0.1*(1-x))
R> Sigma <-matrix(c(1,0.3,0.3,1),nrow=2,ncol=2)
R> mod2 <- bridgesde2d(drift=fx,diffusion=gx,x0=c(1,-0.5),y=c(1,0.5),Dt=0.01,M=1000,type="str",corr=Sigma)
R> mod2
Stratonovich Bridge Sde 2D:
| dX(t) = -(1 + Y(t)) * X(t) * dt + 0.2 * (1 - Y(t)) o dB1(t)
| dY(t) = -(1 + X(t)) * Y(t) * dt + 0.1 * (1 - X(t)) o dB2(t)
| Correlation structure:
1.0 0.3
0.3 1.0
Method:
| Euler scheme with order 0.5
Summary:
| Size of process | N = 1001.
| Crossing realized | C = 1000 among 1000.
| Initial values | x0 = (1,-0.5).
| Ending values | y = (1,0.5).
| Time of process | t in [0,10].
| Discretization | Dt = 0.01.
In Figure 2, we present the flow of trajectories of Xt|X0β=β1,βXTβ=β1 and Yt|Y0β=ββ0.5,βYTβ=β0.5:
Hence we can just make use of the rsde2d()
function to
build our random number generator for the couple Xt,βYt|X0β=β1,βY0β=ββ0.5,βXTβ=β1,βYTβ=β0.5
at time tβ=β5:
x y
1 0.051742 0.0095811
2 0.135792 0.0436799
3 0.021494 -0.0348084
The marginal density of Xt|X0β=β1,βXTβ=β1
and Yt|Y0β=ββ0.5,βYTβ=β0.5
at time tβ=β5 are reported
using dsde2d()
function. A contour
plot of
joint density obtained from a realization of the couple Xt,βYt|X0β=β1,βY0β=ββ0.5,βXTβ=β1,βYTβ=β0.5
at time tβ=β5, see e.g.Β Figure
3:
R> ## Marginal
R> denM <- dsde2d(mod2,pdf="M",at = 5)
R> plot(denM, main="Marginal Density")
R> ## Joint
R> denJ <- dsde2d(mod2, pdf="J", n=100,at = 5)
R> plot(denJ,display="contour",main="Bivariate Transition Density at time t=5")
A 3D plot of the transition density at tβ=β5 obtained with:
We approximate the bivariate transition density over the set transition horizons tβββ[1,β9] with Ξtβ=β0.005 using the code:
bridgesde3d()
Assume that we want to describe the following bridges SDEβs (3D) in Ito form:
We simulate a flow of 1000 trajectories, with integration step size Ξtβ=β0.001.
R> set.seed(1234, kind = "L'Ecuyer-CMRG")
R> fx <- expression(-4*(1+x)*y, 4*(1-y)*x, 4*(1-z)*y)
R> gx <- rep(expression(0.2),3)
R> mod3 <- bridgesde3d(x0=c(0,-1,0.5),y=c(0,-2,0.5),drift=fx,diffusion=gx,M=1000)
R> mod3
ItΓ΄ Bridge Sde 3D:
| dX(t) = -4 * (1 + X(t)) * Y(t) * dt + 0.2 * dW1(t)
| dY(t) = 4 * (1 - Y(t)) * X(t) * dt + 0.2 * dW2(t)
| dZ(t) = 4 * (1 - Z(t)) * Y(t) * dt + 0.2 * dW3(t)
Method:
| Euler scheme with order 0.5
Summary:
| Size of process | N = 1001.
| Crossing realized | C = 998 among 1000.
| Initial values | x0 = (0,-1,0.5).
| Ending values | y = (0,-2,0.5).
| Time of process | t in [0,1].
| Discretization | Dt = 0.001.
For plotting (back in time) using the command plot
, and
plot3D
in space the results of the simulation are shown in
Figure 5:
Hence we can just make use of the rsde3d()
function to
build our random number generator for the triplet Xt,βYt,βZt|X0β=β0,βY0β=ββ1,βZ0β=β0.5,βXTβ=β0,βYTβ=ββ2,βZTβ=β0.5
at time tβ=β0.75:
x y z
1 2.0636 0.074044 -0.30984
2 1.9445 0.111705 -0.26487
3 1.9288 0.054322 -0.50509
the density of Xt|X0β=β0,βXTβ=β0,
Yt|Y0β=ββ1,βYTβ=ββ2
and Zt|Z0β=β0.5,βZTβ=β0.5
process at time tβ=β0.75 are
reported using dsde3d()
function. For an approximate joint
density for triplet Xt,βYt,βZt|X0β=β0,βY0β=ββ1,βZ0β=β0.5,βXTβ=β0,βYTβ=ββ2,βZTβ=β0.5
at time tβ=β0.75 (for more
details, see package sm or ks.)
snssdekd()
&
dsdekd()
& rsdekd()
- Monte-Carlo
Simulation and Analysis of Stochastic Differential Equations.bridgesdekd()
&
dsdekd()
& rsdekd()
- Constructs and
Analysis of Bridges Stochastic Differential Equations.fptsdekd()
&
dfptsdekd()
- Monte-Carlo Simulation and Kernel Density
Estimation of First passage time.MCM.sde()
&
MEM.sde()
- Parallel Monte-Carlo and Moment Equations for
SDEs.TEX.sde()
- Converting
Sim.DiffProc Objects to LaTeX.fitsde()
- Parametric Estimation
of 1-D Stochastic Differential Equation.Bladt, M. and Sorensen, M. (2007). Simple simulation of diffusion bridges with application to likelihood inference for diffusions. Working Paper, University of Copenhagen.
Guidoum AC, Boukhetala K (2024). Sim.DiffProc: Simulation of Diffusion Processes. R package version 4.9, URL https://cran.r-project.org/package=Sim.DiffProc.
Department of Mathematics and Computer Science, Faculty of Sciences and Technology, University of Tamanghasset, Algeria, E-mail ([email protected])β©οΈ
Faculty of Mathematics, University of Science and Technology Houari Boumediene, BP 32 El-Alia, U.S.T.H.B, Algeria, E-mail ([email protected])β©οΈ